Home » Articole » EN » Science » Physics » Physical constants

# Physical constants

posted in: Physics

In science, a physical constant is a physical quantity whose numerical value is fixed. It can be constrasted to a mathematical constant which is a fixed number that does not directly involve a physical measurement.

There are many such constants used in science, some of the most famous of which being: Planck’s constant, the gravitational constant and Avogadro’s constant (better known as Avogadro’s number). Constants can take many forms; some, such as the Planck length represents a fundamental physical distance, others such as the speed of light signifies the maximun speed limit of the universe, yet others are dimensionless quantities such as the fine-structure constant which embodies the interaction between electrons and photons.

Below is a list of physical constants:

Quantity Symbol Value
speed of light in vacuum c 299 792 458 m·s-1 (defined)
permeability of vacuum μ0 4π × 10-7 N A-2 (defined)
12.566 370 614… × 10-7 N A-2
permittivity of vacuum ε0 = 1/(μ0c2) 8.854 187 817 … × 10-12 F·m-1
characteristic impedance of vacuum Z0 = μ0c 376.730 313 461… Ω (defined)
gravitational constant G 6.672 59(85) × 10-11 m3·kg-1·s-2
Planck’s constant h 6.626 068 76(52) × 10-34 J·s
Dirac’s constant h = h / (2π) 1.054 571 596(82) × 10-34 J·s
Planck mass mp = (hc / G)1/2 2.1767(16) × 10-8 kg
Planck length lp= (hG / c3) 1/2 1.6160(12) × 10-35 m
Planck time tp = (hG / c5)1/2 5.3906(40) × 10-44 s
elementary charge e 1.602 176 462(63) × 10-19 C
electron rest mass me 9.109 381 88(72) × 10-31 kg
proton rest mass mp 1.672 621 58(13) × 10-27 kg
neutron rest mass mn 1.674 927 16(13) × 10-27 kg
atomic mass constant, (unified atomic mass unit) mu = 1 u 1.660 538 73(13) × 10-27 kg
Avogadro’s number L, NA 6.022 141 99(47) × 1023
Boltzmann constant k 1.380 6503(24) × 10-23 J·K-1
Faraday constant F 9.648 534 15(39) × 104 C·mol-1
gas constant R 8.314 472(15) J·K-1·mol-1
zero of the Celsius scale   273.15 K (defined)
molar volume, ideal gas, p = 1 bar, θ = 00C   22.710 981(40) L·mol-1
standard atmosphere atm 101 325 Pa (defined)
fine structure constant α = μ0e2c / (2h) 7.297 352 533(27) × 10-3
α-1 137.035 999 76(50)
Bohr radius a0 5.291 772 083(19) × 10-11 m
Hartree energy Eh 4.359 743 81(34) × 10-18 J
Rydberg constant R 1.097 373 156 8549(83) × 107 m-1
Bohr magneton μB 9.274 008 99(37) × 10-24 J·T-1
electron magnetic moment μe -9.284 763 62(37) × 10-24 J·T-1
nuclear magneton μN 5.050 786 6(17) × 10-27 J·T-1
proton magnetic moment μp 1.410 607 61(47) × 10-26 J·T-1
proton magnetogyric ratio γp 2.675 221 28(81) × 108 s-1·T-1
magnetic moment of protons in H20, μ’p μ’p / μB 1.520 993 129(17) × 10-3
proton resonance frequency per field in H20 γ’p / (2π) 42.576 375 (13) M·Hz·T-1
Stefan-Boltzmann constant σ 5.670 400(40) × 10-8 W·m-2·K-4
first radiation constant c1 3.741 774 9(22) × 10-16 W·m2
second radiation constant c2 1.438 769 (12) × 10-2 m·K
standard acceleration of free fall gn 9.80665 m·s-2 (defined)

Some “constants” are really artifacts of the unit system used, like mks or cgs. In natural units, some of these supposedly physical constants turn out to be mere conversion factors.

## References

aPeter J. Mohr and Barry N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 1998,” Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 and Reviews of Modern Physics, Vol. 72, No. 2, 2000.