TelecommunicationTelecommunication is the technique of transmitting a message, from one point or place to another with the typical additional attribute of being bi-directional. In practice it also recognizes that something may be lost in the process; hence the term ‘telecommunication’ covers all forms of distance communications, including radio, telegraphy, television, telephony, data communication and computer networking.

The elements of a telecommunication system are a transmitter, a medium (line) and possibly a channel imposed upon the medium, and a receiver. The transmitter is a device that transforms or encodes the message into a physical phenomenon; the signal. The transmission medium, by its physical nature, is likely to modify or degrade the signal on its path from the transmitter to the receiver. The receiver has a decoding mechanism capable of recovering the message within certain limits of signal degradation. In some cases, the final “receiver” is the human eye and/or ear (or in some extreme cases other sense organs) and the recovery of the message is done by the brain.

Telecommunication can be point-to-point, point-to-multipoint or broadcasting, which is a particular form of point-to-multipoint that goes only from the transmitter to the receivers.

The art of the telecommunications engineer is to analyse the physical properties of the line or transmission medium, and the statistical properties of the message in order to design the most effective encoding and decoding mechanisms.

When systems are designed to communicate through human sense organs (mainly vision and hearing), physiological and psychological characteristics of human perception will be taken into account. This has important economic implications and engineers will research what defects may be tolerated in the signal yet not affect the viewing or hearing experience too badly.

Other Background

Bell Labs scientist Claude E. Shannon published A Mathematical Theory of Communication in 1948. This landmark publication was to set the mathematical models used to describe communication systems called information theory. Information theory enables us to evaluate the capacity of a communication channel according to its bandwidth and signal-to-noise ratio.

At the time of publication, telecommunication systems were predominantly based on analog electronic circuit design. The introduction of mass-produced digital integrated circuits has enabled telecom engineers to take full advantage of information theory. From the demands of telecom circuitry, a whole specialist area of integrated circuit design has emerged called digital signal processing.

Possible imperfections in a communication channel are: shot noise, thermal noise, latency, non-linear channel transfer function, sudden signal drops, bandwidth limitations, signal reflections (echos). More recent telecommunications systems take advantage of some of these imperfections to actually improve the quality of the channel.

Modern telecommunication systems make extensive use of time synchronization. There is a link between the development of telecommunications and very fine-grained (microsecond) time-keeping technology. Until the recent rise of the use of IP Telephony, most modern, wide-area telecommunications systems were synchronised to atomic clocks, or to secondary clocks synchronised to atomic time.


Examples of digital channel coding systems: Hamming coding, Gray coding, Binary coding, Turbo coding.

Examples of telecommunications systems:

  • Semaphore

  • Telegraphy

  • Radioteletype

  • the global telephone network (also known as the Public Switched Telephone Network or PSTN)

  • Radio

  • Television

  • Communications satellites

  • Ethernet

  • the Internet

Examples of human (tele)communications

In a simplistic example, consider a normal conversation between two people. The message is the sentence that the speaker decides to communicate to the listener. The transmitter is the language areas in the brain, the motor cortex, the vocal cords, the larynx, and the mouth that produce those sounds called speech. The signal is the sound waves (pressure fluctuations in air particles) that can be identified as speech. The channel is the air carrying those sound waves, and all the acoustic properties of the surrounding space: echoes, ambient noise, reverberation. Between the speaker and the listener (the receiver), might be other devices that do or do not introduce their own distortions of the original vocal signal (e.g. telephone, HAM radio, IP phone, etc.) The penultimate receiver is the listener’s ear and auditory system, the auditory nerve, and the language areas in the listener’s brain that will “decode” the signal into meaningful information and filter out background noise.

All channels have noise. Another important aspect of the channel is called the bandwidth. A low bandwidth channel, such as a telephone, cannot carry all of the audio information that is transmitted in normal conversation, causing distortion and irregularities in the speaker’s voice, as compared to normal, in-person speech.

Licensed under the GNU Free Documentation License. It uses materials from the Wikipedia.

Share...Share on FacebookTweet about this on TwitterShare on Google+Share on LinkedInShare on RedditShare on StumbleUponShare on TumblrPin on PinterestEmail this to someone

Leave a Reply